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0 QDs are material systems
which confine charge
carriers in 3-dimensions.

U Physical dimensions
smaller than the de

Broglie wavelength of
charge carriers.

U Exhibit size dependent
confinement.

O Atom-like energy states.

O Therefore, exhibit tunable
transport properties.
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Tremendous potential for
next-generation low-power

electronic and quantum
devices.
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Kagan et. al., Science 353, aac5523 (2016).
DOI: 10.1126/science.aac5523

Garcia de Arquer et. al., Science 373, eaaz8541 (2021).
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[ Solution processed QDs ]

Chen et. al., Adv. Mater. 29, pp.
1704062 (2017)
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Solution processed QDs

dispersed in the gate stack
of planar transistors.

QDs for next-gen electronic devices

Karmakar et. al., Silicon 14, pp. 12553-
12565 (2022)
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Wavelength sensitive photo-transistors.

Gate-defined
guantum dots

Quantum dots in

Kulesh et. al., Phys. Rev. App.

13, 041003 (2020)

Gate voltages create QDs by
depleting 2D electron gas.

FET architecture Phys. Lett. 113 (12), pp.
=9 122107 (2018)
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Gate voltage along
channel creates QDs
within the channel.

Kuhlmann et. al., Appl.
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Multi-threshold devices for
multiple logic levels.
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Nadj-Perge et. al.,
Nature 468, pp. 1084-1087
(2010)
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Integer charge confinement, charge oscillations
for qubit generation.



Challenges of solution processed QDs:

 Transport properties significantly depend on QD size.

« Can introduce device to device variability, not ideal at large-scale.
 Not CMOS compatible.

Challenges of gate defined QD devices.

QD sizes are limited by lithography processes, which lead to ~meV
energy level spacing.

« Extremely susceptible to environmental noise.
« QOperation limited to ~mK temperatures.

Motivation for QDs in FET devices:
» Channel dimensions are already at quantum length

scale. t 4
» Localized gates and spacers can create QDs. /
> The dimensions can be further tuned for high o

temperature operation.
» CMOS compatible technology.

But current state-of-the-art uses several gates/spacers or

constrictions (random) along the channel to realize the QDs!

) QDs: Progress & Challenges

Lavieville et. al., Nanoletters 15(5), 2015



QD generation in NWFET

 Use localized gates to create voltage-tunable QDs (VTQDs) in the channel
of a nanowire FET.

« Gate voltage controls electron population inside the VTQD.
« Gate voltage also modulates tunneling through the VTQD.
« Gate length and nanowire diameter control the overall VTQD eigenstates.

SiO, gate insulator

Drain
Gate Sinanowire «— S0, insulator
Si substrate
Le=5nm
L, +— L,

-+

L.y (20 nm max.)

Schematic of the considered QD in state-of-the-art nanowire FET.



Mathematical Modeling: NEGF

GPev(E) = (E — HYY — 35— 3p)
Is = i(Zs — Z§) Ip = i(Ep — Zp)

B e
e \_JEs(m) — Zp(m;) =

GDev (E)

Note:

H?Seo” is formulated using mode space approach.

d /1 0
Hiso = —h* < —>+E5ub+U(Z)

9z m; 0z



Results: LDOS

Local density of states (LDOS) (/eV /nm)
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* Applying gate voltage creates
localized potential well and
the source/drain tunnel
barriers.

5
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5 nm gate length ensures
electron confinement in the
well.
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- Higher V increases well ’

depth to create stronger
confinement.
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* Higher Vg also manifests the
higher energy eigenstates.
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* Occupation of an eigenstate
depends on the source fermi
level, E;s.

o N A O

o 4 8 12 16

- Voltage induced confinement Distance along nanowire axis (nm) T
+ geometrical confinement

: _ — s p(nm) _ () (m)
(nanowire geometry) = VTQD. Eop " =Eg, tE| Note: V, = 0.4 V




Two extreme cases: strong (Dyw = 10 nm)
and weak (D, = 20 nm) geometrical
confinements explored.

Transfer characteristics exhibit peaks
corresponding to resonant tunneling.

Decreasing the QD-to-drain separation
increases broadening of the peaks, to
lead to current thresholds, T,, T,... due to
drain induced level-broadening.

Increase in nanowire diameter from 10 nm
to 20 nm leads to lowered tunnel barriers
and weaker geometrical confinement of
electrons.

Thus, thresholds appear at a lower gate
voltage (0.18 V) in such devices.

Larger level broadening in such devices
apparent as significantly broadened
peaks in the transfer characteristics.
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Results: Impact of channel length (L)
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Increased broadening of

current peaks due to

lowered potential barriers.

For QD-to-drain separation
< 6 nm, this broadening
leads to several thresholds.

Threshold like nature

gradually disappears with

the decrease in L.

For L,, <12 nm, the
thresholds completely
disappear to lead to
conventional FET like
transport.

Conventional FET like

transfer characteristics
appears irrespective of QD

position.
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« Sharp peaks in current spectrum indicate energies at which conduction
from source to drain occurs.

* Reducing the channel length lowers the peak energy since the barrier
height and width also reduces.

* For L., ~ 10 nm, the secondary peak at ~0.3 eV (E;5) leads to thermionic
transport, which contributes to the FET-like transfer characteristics.



Conclusions

Localized gates in nanowire FET devices with existing 2D geometrical
confinement can create VTQDs along with voltage-induced tunnel
barriers.

The VTQD eigenstates are significantly affected by the position of
gate along the channel, as well as the channel length.

At larger QD-to-drain separations, sharp peaks in the transfer
characteristics indicate the presence of sharp QD levels.

Energy level broadening at smaller QD-to-drain

1E+0

E State-2

separations lead to current thresholds.
Devices in such configuration can be used as
multi-threshold devices at room temperature.
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However, the VTQD behavior strongly depends
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on channel length. L < 14 nm significantly z —3 -4

degrades the QD characteristics as transport 0 04 02 03
becomes thermionic.
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