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❑ QDs are material systems 

which confine charge 

carriers in 3-dimensions.

❑ Physical dimensions 

smaller than the de 

Broglie wavelength of 

charge carriers.

❑ Exhibit size dependent 

confinement.

❑ Atom-like energy states.

❑ Therefore, exhibit tunable 

transport properties.

Introduction: Quantum Dots

Kagan et. al., Science 353, aac5523 (2016).
DOI: 10.1126/science.aac5523

García de Arquer et. al., Science 373, eaaz8541 (2021).
DOI: 10.1126/science.aaz8541

Tremendous potential for

next-generation low-power

electronic and quantum

devices.



Gate-defined 
quantum dots

Quantum dots in 
FET architecture
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Gate voltages create QDs by 
depleting 2D electron gas. Gate voltage along

channel creates QDs
within the channel.

QDs for next-gen electronic devices

Wavelength sensitive photo-transistors. Multi-threshold devices for 
multiple logic levels.

Solution processed QDs
dispersed in the gate stack
of planar transistors.

Karmakar et. al., Silicon 14, pp. 12553-
12565 (2022)

Integer charge confinement, charge oscillations 
for qubit generation.

Chen et. al., Adv. Mater. 29, pp. 
1704062 (2017)

Kuhlmann et. al., Appl. 
Phys. Lett. 113 (12), pp.
122107 (2018)

Solution processed QDs

Nadj-Perge et. al.,
Nature 468, pp. 1084–1087 
(2010)



Motivation for QDs in FET devices:

➢ Channel dimensions are already at quantum length 

scale.

➢ Localized gates and spacers can create QDs.

➢ The dimensions can be further tuned for high 

temperature operation.

➢ CMOS compatible technology.

Challenges of solution processed QDs:

• Transport properties significantly depend on QD size.

• Can introduce device to device variability, not ideal at large-scale.

• Not CMOS compatible.

Challenges of gate defined QD devices.

• QD sizes are limited by lithography processes, which lead to ~meV

energy level spacing.

• Extremely susceptible to environmental noise.

• Operation limited to ~mK temperatures.

La
vi

ev
ill

e
et

. a
l.

, N
a

n
o

le
tt

er
s

1
5

(5
),

 2
0

1
5

QD

Channel

QDs: Progress & Challenges

But current state-of-the-art uses several gates/spacers or 

constrictions (random) along the channel to realize the QDs!



Schematic of the considered QD in state-of-the-art nanowire FET.

• Use localized gates to create voltage-tunable QDs (VTQDs) in the channel 

of a nanowire FET.

• Gate voltage controls electron population inside the VTQD.

• Gate voltage also modulates tunneling through the VTQD.

• Gate length and nanowire diameter control the overall VTQD eigenstates.

QD generation in NWFET

SiO2 gate insulator

SiO2 insulator

Si substrate

Source Drain

Gate Si nanowire
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Mathematical Modeling: NEGF
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• Applying gate voltage creates 

localized potential well and 

the source/drain tunnel 

barriers.

• 5 nm gate length ensures 

electron confinement in the 

well.

• Higher VG increases well 

depth to create stronger 

confinement.

• Higher VG also manifests the 

higher energy eigenstates.

• Occupation of an eigenstate 

depends on the source fermi 

level, EfS.

• Voltage induced confinement 

+ geometrical confinement 

(nanowire geometry) = VTQD.

Results: LDOS

Distance along nanowire axis (nm)

E
n

e
rg

y
 (

e
V

)

Local density of states (LDOS) (/eV /nm)

𝑬𝑳
𝟏

Tunnel barriers

Subbands

(geometrical 

confinement)

𝑬𝑸𝑫
𝒏,𝒎

= 𝑬𝒔𝒖𝒃
(𝒏)

+ 𝑬𝑳
(𝒎)

𝑬𝑳
𝟐

𝑬𝑳
𝟏

𝑬𝑳
𝟎

Tunneling

Note: VD = 0.4 V



Results: Impact of QD-to-drain separation (L2)

• Two extreme cases: strong (DNW = 10 nm) 

and weak (DNW = 20 nm) geometrical 

confinements explored.

• Transfer characteristics exhibit peaks 

corresponding to resonant tunneling.

• Decreasing the QD-to-drain separation 

increases broadening of the peaks, to 

lead to current thresholds, T1, T2… due to 

drain induced level-broadening.

• Increase in nanowire diameter from 10 nm 

to 20 nm leads to lowered tunnel barriers 

and weaker geometrical confinement of 

electrons.

• Thus, thresholds appear at a lower gate 

voltage (0.18 V) in such devices.

• Larger level broadening in such  devices 

apparent as significantly broadened 

peaks in the transfer characteristics.
Lch = 20 nm



Results: Impact of channel length (Lch)

• Current levels increase with  

decreasing Lch.

• For QD-to-drain separation 

≤ 4 nm, the peaks undergo 

significant broadening due 

to increased coupling with 

the drain.

• The decrease in channel 

length also broadens the 

resonances.

• For Lch < 14 nm, resonant 

tunneling features in 

transfer characteristics are 

substantially degraded.

• Conventional FET like 

transfer characteristics 

apparent for device with Lch

= 10 nm irrespective of QD 

position.

Lch: 10 – 20 nm, QD-to-drain separation: 3 – 6 nm, DNW: 10 nm.



Results: Impact of channel length (Lch)

• Increased broadening of 

current peaks due to 

lowered potential barriers.

• For QD-to-drain separation 

< 6 nm, this broadening 

leads to several thresholds.

• Threshold like nature 

gradually disappears with 

the decrease in Lch.

• For Lch ≤ 12 nm, the 

thresholds completely 

disappear to lead to 

conventional FET like 

transport.

• Conventional FET like 

transfer characteristics 

appears irrespective of QD 

position.

Lch: 10 – 20 nm, QD-to-drain separation: 3 – 6 nm, DNW: 20 nm.



Results: Current spectrum

• Sharp peaks in current spectrum indicate energies at which conduction 

from source to drain occurs. 

• Reducing the channel length lowers the peak energy since the barrier 

height and width also reduces.

• For Lch ~ 10 nm, the secondary peak at ~0.3 eV (EfS) leads to thermionic 

transport, which contributes to the FET-like transfer characteristics.

Lch



• Localized gates in nanowire FET devices with existing 2D geometrical

confinement can create VTQDs along with voltage-induced tunnel

barriers.

• The VTQD eigenstates are significantly affected by the position of

gate along the channel, as well as the channel length.

• At larger QD-to-drain separations, sharp peaks in the transfer

characteristics indicate the presence of sharp QD levels.

Conclusions

• Energy level broadening at smaller QD-to-drain

separations lead to current thresholds.

Devices in such configuration can be used as

multi-threshold devices at room temperature.

• However, the VTQD behavior strongly depends

on channel length. Lch < 14 nm significantly

degrades the QD characteristics as transport

becomes thermionic.
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