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Resonant tunneling

Adapted from Encyclopedia of Physical Science
and Technology, 3" ed, 2003.

= |n a double barrier structure, =
resonant tunneling occurs when the
energy level of incoming electrons
coincides with one of the quasi-
bound states in the quantum well.

= RTDs exhibit negative differential
resistance (NDR).

* The peak-to-valley current ratio
(PVCR) is a figure of merit of RTDs.

Current

= High PVCR = better signal to noise
ratio, which is particularly useful in
oscillators.

Voltage
Schematic representation of
resonant tunneling in a double
barrier and corresponding I-V
characteristics.
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= Low peak-to-valley current ratio (PVCR).

Devices fabricated so far...

= Fabricated using llI-V materials, particularly InGaAs, InAlAs, AIN,
GaN, employing molecular beam epitaxy (MBE), metal-organic
chemical vapor deposition (MOCVD) and so on...

= Si/Ge in contrast may provide cost effectiveness and simplicity
in terms of fabrication.
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(a) Schematic of Si/SiO,/Ge/SiO,/Pt resonant tunneling device. The Si substrate
and top Pt contact act as reservoirs, source and drain, respectively.

(b) Bandstructure of the device considered, in equilibrium. The thickness of the
low bandgap Ge-film in-between the barriers is less than its EBR (~25 nm)
and therefore, it acts as a quantum well.

» Asymmetric barriers can provide technological flexibility in terms of
fabrication in practice.
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DOS plots for device with different
Ge-quantum well layer widths, for
zero and 4.5 V applied biases.

(@) 15 nm (b) 20 nm (c) 25 nm

= A wider Ge-quantum well layer
allows for more number of
eigenstates compared to a thinner
well.

= Application of bias changes the
shape of the quantum wells and
consequently, the energy levels in
them.

= The bias required for resonance
also depends on the well width.

» Maximum level tuning is observed
for the device with 20 nm wide well,

when biased at 4.5 V.
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= Transmission coefficients for devices with Ge-quantum well widths of (a) 15 nm
(b) 20 nm (c) 25 nm are considered.

*The increase in well width results in an increasing number of eigenstates.

*The decrease in well width leads to a sharper resonance corresponding to the
decrease in broadening of energy levels.

*"These two are counteracting phenomena and their combined effect leads to
maximum tunneling currents in the device with ~20 nm wide quantum well layer.




Well Resonance Feals
. current
width Voltage d s
ensity
_ 15+ i V) (mA/cm?)
o
5 0 25 3.30 0.12 3.75
E 24 3.53 0.13 8.50
§ 5.4 23 3.75 0.76 8.96
§ 22 4.00 3.58 10.44
30 21 4.23 11.01 10.09
%”w 20 4.65 11.30 17.86
‘o 19 4.98 9.55 17.38
18 5.33 11.68 16.76
Current valley characteristics of the
device obtained by varying the 1 — 1 L
Ge-quantum well width, data summarized 16 5.88 8.26 14.03
in adjacent table. 15 6.00 3.86 5.65

= A maximum PVCR of ~18 is obtained for a well width of 20 nm,
corresponding to a peak current density of 11.30 mA/cm2.

»Decrease in well width corresponds to a shift of current peaks to higher
bias voltages.

»Current peaks are observed to reach a minima for increasing the well
width beyond 22 nm.



Conclusions

*The variation of resonant tunneling current with applied bias and
Ge-quantum well width at room temperature is investigated in
detail. The results indicate that significant resonant tunneling
requires higher voltages for lower Ge-well width.

*For reducing the Ge-well width from above EBR to a sub-EBR
value, the PVCR exhibits a maximum value at a well width of 20 nm.

*The tunneling current peak reaches a maximum value of 13.36
mA/cm? for a well width of 17 nm, corresponding to a PVCR of
12.47.

*These values of PVCR are larger in order than conventional RTDs,
at room temperature.
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