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❑ Nanowire diameter: 5 nm; Gate length: 3

nm (each); Gate separation: 3 nm;

Channel length (source to drain): 20 nm.

❑ Single electron occupancy of VTQDs ⇒
reduced charge noise.

❑ Energy gap between VTQD states ˃˃

phonon energy @ RT ⇒ negligible phonon

scattering.

❑ Retarded Green’s function, G(E), to model

the charge qubit operation [1] is:

HISO: Isolated nanowire Hamiltonian with

two gates; ∑S/D: source/drain self-energies

which incorporate non-unitary evolutions

of the quantum state [2].

❑ ∑S → ‘Initialization’; ∑D →‘Measurement’.

❑ Gate voltages VG1(2) are non-decohering!

❑ G(E) → LDOS: D(E) → 𝒏 𝒛 = 𝑫׬ 𝑬 𝒅𝑬

❑ ‘Measurement’ → Pulse current at drain;

to obtain employ Landauer formula:

❑ Dephasing time → decay of pulse current

in time domain for continuous ∆VG2 pulses

at gate-2.

❑ 𝑭. 𝑻.𝑬→𝒕 ⇒ Fourier transform from energy

to time domain.

❑ Positional basis: |L>/|R> → logical qubit

states where superposed state expressed

as,

❑ 𝒏 𝒛 → θ; manipulated by non-adiabatic

∆VG2 pulses at gate-2.

❑ Local phase of G(E) → ϕ; manipulated by

varying VG1 keeping VG2 fixed.
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Al composition (x)
Dephasing Time 

(T2) (ns)

x = 0: GaAs 82. 4

x = 0.2: Al0.2Ga0.8As 97.5

x = 0.4: Al0.4Ga0.6As 141.0

x = 0.6: Al0.6Ga0.4As 175.3

x = 0.8: Al0.8Ga0.2As 201.3

x = 1: AlAs 272.1

2. Charge stability diagram

3. Dephasing time

Reduced  DQD/ 

reservoir coupling, 

high tunnel 

barriers ⇒ high T2.

❑ High Al composition → weak inter-dot

coupling (high m*, high tunnel barriers) ⇒
reduced anti-crossing energy.

❑ Qubit current also significantly reduced!

1. Bloch sphere coverage

❑ High m* → reduced tunneling probability

and degraded inter-dot coupling ⇒
reduced Bloch sphere coverage, less

information can be encoded!

❑ Higher Al content ⇒reduced Bloch sphere

coverage.

❑ Lower Al content ⇒ improved inter-dot

tunneling, enhanced anti-crossing energy.

❑ Al composition dependent dephasing

time: ~10x – 20x higher than previously

reported values (~10 ns) for GaAs based

DQDs at 100 mK [3-5].

❑ High dephasing times at the cost of

reduced anti-crossing, qubit current and

degraded Bloch sphere coverage.

❑ Dimension dependent strong quantization

reduces the charge noise and phonon

scattering phenomena.
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Non-adiabatic voltage pulses eliminate

the need for microwave driven state 

manipulation!

❑ Double quantum dot (DQD) devices for

scalable quantum computers: control over

quantum state manipulation; compatibility

with already existing state-of-the-art

fabrication processes.

❑ Challenges: very short dephasing time

(~1-10 ns) and operational at ultra-low

temperature operation (~mK-µK) [3-5].

❑ Voltage-tunable quantum dots (VTQDs)

potentially free from the above limitations.

❑ Present work: Al composition dependent

charge qubit operation and performance

of a dual-gate AlxGa1-xAs nanowire FET

with voltage-tunable DQDs.
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❑ High Al composition leads to high effective

mass (m*); high bandgap; low permittivity.

❑ High m* → reduced tunneling probability.

❑ High bandgap/low permittivity observed to

enhance tunnel barriers.
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